Deep Learning of Audio and Language Features for Humor Prediction
نویسندگان
چکیده
We propose a comparison between various supervised machine learning methods to predict and detect humor in dialogues. We retrieve our humorous dialogues from a very popular TV sitcom: “The Big Bang Theory”. We build a corpus where punchlines are annotated using the canned laughter embedded in the audio track. Our comparative study involves a linear-chain Conditional Random Field over a Recurrent Neural Network and a Convolutional Neural Network. Using a combination of word-level and audio frame-level features, the CNN outperforms the other methods, obtaining the best F-score of 68.5% over 66.5% by CRF and 52.9% by RNN. Our work is a starting point to developing more effective machine learning and neural network models on the humor prediction task, as well as developing machines capable in understanding humor in general.
منابع مشابه
The Use of Educational Humor in the Process of Learning and Teaching: A Special Facilitator for Second Language Learners
The Use of Educational Humor in the Process of Learning and Teaching: A Special Facilitator for Second Language Learners A. Zeyaa'ee Mehr, Ph.D. Research on educational humor during the past two decades demonstrates both the role and the impact of humor on the processes of learning and teaching, especially in the area of second/foreign language learning. There are a number of theories...
متن کاملPrediction of Iranian EFL Learners’ Learning Approaches Through Their Teachers’ Narrative Intelligence and Teaching Styles: A Structural Equation Modelling Analysis
It goes without saying that there are many influential factors affecting the success of any learning experience, and teachers are definitely among the significant factors influencing the process of teaching and learning. In this respect, the present study sought to investigate the prediction of Iranian English as a Foreign Language (EFL) learners' learning approaches through their teachers’ nar...
متن کاملComparing the Impact of Audio-Visual Input Enhancement on Collocation Learning in Traditional and Mobile Learning Contexts
: This study investigated the impact of audio-visual input enhancement teaching techniques on improving English as Foreign Language (EFL) learnersˈ collocation learning as well as their accuracy concerning collocation use in narrative writing. In addition, it compared the impact and efficiency of audio-visual input enhancement in two learning contexts, namely traditional and mo...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملYardsticks for Evaluating ELT Pod/Vodcasts in Online Materials Development and Their Implications for Teacher Education and Art Assisted Language Learning
ELT online materials development, which is a multifaceted multidisciplinary area, is not welcomed by many teachers, because it is demanding, challenging and confusing. They fear facing new technologies in their teaching sessions to avoid failing or being caught by other audiences. Furthermore, they struggle hard in evaluating their pod/vodcasts. In order to remove the fears and barriers, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016